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Abstract

Decentralized exchanges (DEXes) are an essential component of the nascent decen-

tralized finance (DeFi) ecosystem. The most common DEXes are so-called automated

market makers (AMMs), smart contracts that pool liquidity and process trades as atomic

swaps of tokens. AMMs price transactions with a deterministic liquidity invariance rule

that only uses the AMM’s token deposits as inputs and that has no precedent in tradi-

tional finance. Yet in the context of transparent and open blockchain operations, any

liquidity invariance pricing function allows so-called sandwich attacks (akin to front-

running) that increase the cost of trading and threaten the long-term viability of the

DeFi eco-system. Linear price rules that commonly emerge in economic models have sim-

ilar problems, except for uniform pricing for which sandwich attack profits are limited

and smaller, but which invites excessive order splitting.
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Public blockchains such as Ethereum are software protocols that allow multiple

parties to operate under shared assumptions and data without an institutional reason

to trust each other. A blockchain’s core function is storing, processing, and trans-

ferring digital value, and the ability to exchange tokens is a central function of these

networks. In principle, it would be possible to organize crypto-asset trading directly

on a blockchain by registering limit orders as ”smart contracts.” However, this is not

practical because each new limit order costs a validation fee. Unmatched orders would

also waste resources as they still need to be processed by all 10,000+ network nodes.

Lastly, a peer-to-peer network by itself is not a marketplace.

Instead, until recently users could trade blockchain-based items or tokens only on

centralized, ”off-chain” exchanges, reducing the blockchain to a settlement infrastruc-

ture. This changed by mid-2020 with the release of Automated Market Maker (AMM)

systems such as UniSwap or SushiSwap, which have seen tremendous user uptake and

process billions of dollars worth of transactions every day, often more than the largest

centralized exchanges such as Binance and Coinbase.

AMMs use the blockchain’s inherent ability to process code and they are a gen-

uinely novel market structure institution. First, AMMs pool liquidity so that liquidity

providers do not compete, a stark contrast to stock exchanges where firms make billion-

dollar investments to gain nano-second speed advantages. Even unsophisticated token

owners can act as passive liquidity providers by contributing their crypto-assets to

a liquidity pool, allowing them to earn a market-making income without specialized

skills, constant monitoring of markets, or expensive equipment. Second, AMMs do

not directly rely on a market mechanism in which the price equilibrates demand and
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supply. Instead, AMMs use a hard-coded pricing rule. Third, the pricing function that

almost all AMMs employ has no precedent in traditional financial markets. Therefore,

this novel setup raises questions about the functioning of markets, the informational

efficiency of prices, and the possible emergence of arbitrage.

The workings and economic impact of AMMs must be examined against the back-

drop of the functioning of a blockchain. As I show in this paper, the organization of

block production and the need for the efficient use of resources present significant con-

ceptual challenges for any automated market-making setup. The hard-coded pricing

function that swap exchanges currently use creates persistent “exploit” opportunities,

imposes excess costs on users, congests the network, and raises transactions costs for

all blockchain users. The challenge is fundamental: no known pricing function can

satisfy a set of reasonable requirements.

A swap exchange/AMM creates a liquidity pool by combining deposits of pairs of

tokens A and B from liquidity providers. A liquidity demander can trade against this

pool by sending one type of token and thus receiving the other token in an atomic

swap. A pricing rule determines the exchange rate. Most AMMs that are in operation

are designed to be self-contained in the sense that the price keeps the pool’s liquidity

invariant: when a liquidity demander removes one type of token from the pool, they

have to deposit a quantity of the other type of token such that the aggregate liquidity

of the pool defined by a “bonding curve” remains unchanged.

The specific bonding curve that AMMs such as UniSwap or SushiSwap use is re-

ferred to as a “constant product” pricing rule.1 Suppose the pool contains X units of

1The first mention of automated decentralized market making is in a 2016 Reddit post by Vitalik
Buterin. Martin Koppelmann proposed the first constant product pricing scheme.
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token A and Y units of B. Under the constant product rule, the pool’s liquidity c is

the product X · Y = c. To remove Q of the A tokens, a buyer must add P of the B

tokens such that the liquidity level remains invariant, c = (X −Q) · (Y + P ).

Let me explain the problem with this functional form using specific numbers. At the

beginning of February 2022, the UniSwap (V2) token pair ETH (the native cryptocur-

rency of Ethereum) and USDC (a digital representation of the US dollar) contained

approximately 38,100 ETH and 118M USDC; the implied marginal price of 1 ETH

was thus around $3,097. A liquidity demander who wants to buy 100 ETH from this

contract would pay approximately $3,105 per ETH. However, suppose a speculator

manages to inject a same-sized trade before this 100 ETH trade and then reverses it

immediately after. What would this speculator earn from “sandwiching” the original

trade? The initial trade would cost the speculator $3,105 per ETH, and reversing the

trade yields $3,121 per ETH, for a total profit of $1,639 — which is value extracted

from the original trader. Although this is a lot of money, the loss is only 5 basis points

of the transaction size, which may be bearable. But it gets worse: had the attacker

submitted a “sandwiching” trade of 1,000 ETH, the value extracted would be almost

$17K, and had they submitted a trade for 10,000 ETH, it would have been $261K. This

problem is pervasive: as I show in this paper, for a general class of pricing functions

that are based on liquidity invariance (such as the constant product rule), under a mild

convexity assumption, sandwich attacks are profitable for any trade (modulo fees), and

the attacker’s profits are unbounded.

Although sandwich attacks are profitable, are they possible? The answer is af-

firmative because of the inherent transparency of blockchain transaction processing.
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Namely, signed and processed blockchain transactions wait in publicly visible “mem-

pools” for validators to include them in a block. A front-runner can always add a new

pair of transactions to the mem-pool to sandwich a trade. Crucially, the trade price is

not fixed when it is submitted, nor when it is added to the mempool. What determines

the price of a trade is the pool’s liquidity at the time when a validator processes it

within a block. A trade’s cost thus depends even on its position in the block, which

allows a sandwich attack to be successful and profitable.

The sandwich attack problem is not hypothetical, and I am not the first to high-

light it.2 The blockchain community classifies sandwich attacks as a form of “(miner)

extractable value” (MEV), i.e., rents that a third party can extract from the original

initiator. According to the Flashbot tracker, automated market makers account for

almost 80% of the roughly $600M of observed MEV.3

The blockchain community has developed tools and patches to mitigate sandwich

attacks, and AMMs themselves have features that limit the losses that a trader would

incur; I review several approaches in the paper. They do not, however, resolve the

problem and attacks continue to occur systematically. As anecdotal evidence, there is

an Ethereum address with the DNS designation “MEV Bot: 0x000...94e” that engages

in sandwich attacks many times each day. For instance, in block 14404142 (on March

17, 2022), this bot sandwiched a UniSwap transaction of ETH-APE (the governance

2See, e.g., Vitalik Buterin’s post here. Angeris and Chitra (2021) formalize it as “path deficiency.”
3Sandwich attacks may not cause the entire amount. It’s important to recognize that MEV creates

externalities beyond the value that users lose because front-running bots regularly bid up network
usage fees in so-called priority gas auctions, which raise the price of Ethereum transactions for all
other users. Running data is available at ETH Gas Station; UniSwap’s V2’s main contract address is
0x7a250d5630b4cf539739df2c5dacb4c659f2488d. In a recent paper, Gans and Holden (2022) propose
a mechanism design approach to prevent third-party value extraction. The solution, however, does
not apply to and resolve the sandwich attack problem. Instead, it applies to the type of cases that
the now-famous blog post Ethereum is a Dark Forest refers to.
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token of the “Bored Ape Yacht Club”).4 The original trader wanted to swap 1.5 ETH

for APE tokens but got sandwiched. The attacker spent 4.14 ETH to buy 1,668 APE

and reversed this trade for 4.46 ETH right after for a profit of 0.3 ETH. Notably, this

sandwich attack was submitted using the Flashbot protocol, one of the countermeasures

that are in place to prevent such a sandwich attack.

The constant product pricing rule is ad hoc, not an equilibrium outcome, and

without precedent in financial markets. That raises the question: how would the

pricing rules from economic models perform in a blockchain environment? To answer

this question, I focus on linear price functions as are common in the economic literature,

e.g., Kyle (1985), Grossman and Miller (1988), or Biais (1993). Linearity arises often,

either by design or because non-linear prices cause distortions. My analysis shows that

such rules don’t perform much better. The linear rule that resembles the pricing of a

limit order book allows unbounded sandwich attack profits, too. A uniform pricing rule

does somewhat better because it intrinsically limits the attacker’s profit. However, this

pricing function incentivizes excessive order splitting, which would congest the network.

In the absence of a clear theoretical ranking, the question remains if one pricing

rule would be better for traders in practice, e.g., because it is cheaper. To enable a fair

comparison, I develop a model of liquidity provision that can accommodate different

pricing functions. I then calibrate the model’s parameters using data from observed

AMM trading. For liquid trading pairs, constant product prices are a little lower,

whereas traditional pricing for illiquid pairs is notably cheaper. Losses from sandwich

trades are lowest for the uniform pricing rule.

4The relevant three transactions are under the following links: URL link 1, 2, and 3.
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Related Literature. There are three other theoretical papers on decentralized ex-

changes. These three model trading under asymmetric information. In the traditional

microstructure literature, the price endogenously reflects the information, whereas with

constant product pricing the functional form is fixed. Market makers determine the

pricing function’s slope with their ex ante supply of liquidity, and in their decision

must account for the rewards they receive given the information shocks.

Lehar and Parlour (2021) use two assumptions to determine the AMM liquidity

provision under asymmetric information. First, they assume zero profits for liquidity

providers. Second, informed traders submit fixed size quantities (because of fixed-

size shocks to the fundamental). They show that for many parametric configurations,

investors do not prefer the limit order market over constant product pricing.

Aoyagi and Ito (2021) study prices when centralized and decentralized swap ex-

changes co-exist in a model with asymmetric information. They show that the AMM

price often deviates from the fundamental value even when information can be perfectly

inferred from the price.

Capponi and Jia (2021) examine the impact of price volatility, caused by trading

on centralized exchanges, on the welfare of liquidity providers in automated swap ex-

changes for a broad set of functions (twice-continuously differentiable, and convex).

They identify the conditions for which there is a breakdown of liquidity supply in the

automated system and they show that a pricing curve with larger convexity reduces

arbitrage rents, but also decreases trading activities.

The main interest of this paper are the properties of the functional forms of different

pricing rules. The model in Section III. of this paper additionally studies the liquidity
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provision decision of risk-averse market makers under different pricing functions. It is

based on symmetric information, thus complementing the literature.

I. Properties of Pricing Functions

A. Liquidity Invariance Functions

The idea of an automated pricing rule for a liquidity pool is that as a liquidity

demander removes one type of token from the pool, they have to deposit a quantity of

the other type of token such that the liquidity of the pool, as defined by the so-called

“bonding curve,” remains unchanged. The ubiquitous constant product rule is one

example: A smart contract contains deposits of X units of A tokens and Y units of

B tokens. To withdraw (or purchase) quantity Q of A-type tokens, a user deposits

a quantity P of B-type tokens. After the trade, the contract contains X − Q of the

A tokens and Y + P of the B tokens. The constant product pricing rule requires

liquidity invariance in the sense that the level of liquidity is defined by a constant c

with c = X · Y , so that when trading quantity Q, P satisfies c = (X −Q)(Y + P ).

A more general way to think about pricing in this context is that the exchange rate

of tokens follows a liquidity invariance condition in the sense that there is a function

L(X, Y ) such that for demanded quantity Q, when the pool contains X of the A and

Y of the B tokens, quantity P (Q|X, Y ) satisfies

L(X, Y ) = L(X −Q, Y + P (Q|X, Y )).

In what follows I will use superscript li to signify liquidity invariance pricing generally
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and cp for constant product pricing specifically. Moreover, prices and values in eco-

nomic models are measured in a numeraire, which I assume here to be the B token.

I will further assume that the A token has a fundamental value V and that absent

any trades, the marginal price of an A token coincides with its fundamental value.

In what follows, therefore, for known V , Y is fixed by X . To reduce the number of

displayed variables and thus to simplify the exposition, I will omit Y when referring

to a pricing function and only display changes to the number of A tokens. I will

also omit reference to the token inventories altogether for the status quo; therefore

P li(Q|X, Y ) = P li(Q|X) ≡ P li(Q). The constant product rule resembles a Cobb-

Douglas production function in the sense that the input token amounts X and Y

“produce” liquidity according to L(X, Y ) = Xα · Y β.

In this remainder of this section and the next, I will explore the properties of

pricing functions that emerge from liquidity invariance conditions and compare them

to linear pricing functions. I begin by imposing assumptions that are common for

production/consumption functions in consumer and producer theory. Namely, I assume

strict convexity to the origin in the sense of diminishing payments received: as users

deposit A token in the contract, the amount of B tokens received in return diminishes,

and vice versa. In a blockchain environment, it is further important that the price for

Q units of the A token in terms of P units of the B tokens is determined by a function

which is continuous and differentiable.
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B. Linear Pricing Functions

The constant product rule is an exogenous rule. In contrast, in economic models, in

particular in finance, a price usually arises endogenously as it equilibrates the choices

of optimizing consumers and producers. Moreover, in many market microstructure

trading models, the equilibrium pricing rule is a linear function of demand; examples

are Kyle (1985) who solves his model assuming a linear price function, and rational

expectations models in the tradition of Grossman and Miller (1988) where a linear

price function emerges in equilibrium. Linear prices also arise in many other economic

models in the literature; e.g., linear schedules are critical in optimal taxation as they

prevent disincentives. Linear marginal price functions are, therefore, an important

class in economics.

Applied to a liquidity pool, one implicitly assumes —as is common in most economic

models— perfect capital markets in the sense that liquidity providers are able to borrow

and then supply any funds at market rates. In other words, the deposited quantities

X and Y of the tokens are not part of the pricing rule so that these models do not

produce an invariance rule.

Henceforth, I use the term “pricing function” P (Q|I) for the cost of a trade Q of

the A token when liquidity providers’ aggregate inventories in the A token are I. I

further use p(q|I) for the price of the q-th unit and refer to p as the marginal price

function. Since the asset (or A token) has expected value V , I require p(0|0) = V . A

linear price would therefore take the form

p(q|I) = V +mq + nI, m > 0 > n, (1)
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where the restriction on the parameters m,n stems from the fact that prices increase

in quantities and decrease in inventories (assuming liquidity providers are risk-averse).

There are two common ways to compute the total cost of an order P (Q|I):

P up(Q|I) = Q · p(Q|I) = Q(V +mupQ+ nupI) and (2)

P dp(Q|I) =

∫ Q

0

p(q|I)dq = Q

(

V +
mdp

2
Q+ ndpI

)

. (3)

The first is the most common price-times-quantity rule where the cost of the entire order

is determined by the price of the marginal unit Q. This rule is sometimes referred to

as uniform pricing, hence the superscript up.

The second rule (3) arises in limit order markets where the price of a large order

is the sum of smaller trades that execute against standing limit orders which each

can have a different price. This rule is known as discriminatory pricing, hence the

superscript dp.

Lemma 1: The linear prices are continuous iff nup = −mup and ndp = −2mdp.

Proof. Continuity after a trade of q implies that the marginal pricing functions adjust

by the amount of the new inventory, p(q|I) = p(0|I− q). This means in particular that

V + mq + nI = V + n(I − q). For (2) and (3) this implies respectively, nup = −mup

and ndp = −2mdp.

In what follows I will use superscript lp to signify a linear pricing rule generally. As

with invariance pricing, I will also omit reference to the inventory altogether for the

status quo; i.e., P (Q|I) ≡ P lp(Q).
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C. Desirable Properties and Institutional Features of Blockchain Operations

Efficient Use of Computing Resources. Blockchains such as Ethereum are com-

puter networks that guarantee the execution of code and can thus run an automated

market maker (decentralized) application. However, blockchains as distributed net-

works require that all validator nodes execute every piece of code to ensure that the

state of the blockchain is updated correctly. Moreover, users have to pay the valida-

tor for the computational cycles (“gas”) that their code consumes. Thus, avoiding

economically valueless code executions is individually rational and socially desirable.

In the context of trading, it is therefore desirable if a pricing function has size

consistency so that splitting an order into two (or more) orders costs no less than

sending a single order of the same size, ignoring blockchain processing costs.

Definition (Size Consistency): Price functions P li, P lp satisfy size consistency when

order splitting is not profitable, i.e., if for any α ∈ (0, 1), trade size Q < X holds

P lp(αQ)+P lp((1−α)Q|I−αQ) ≥ P lp(Q) and P li(αQ)+P li((1−α)Q|X−αQ) ≥ P li(Q)

respectively.

Proposition 1 (Size Consistency of Traditional and Liquidity Invariant Pricing):

1. Liquidity invariance based pricing rules always satisfy size consistency.

2. Among linear functions, discriminatory pricing satisfies size consistency, uniform

pricing does not.

Proof. of 1. The statement is a direct consequence of pricing along an iso-liquidity

curve and best explained graphically. Figure 2 shows that as a user removes quantity Q,

they must pay P such that the point (X − Q, Y + P ) is on the iso-liquidity curve L.
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Splitting up Q into parts αQ, (1− α)Q simply means splitting the amount P that the

liquidity demander pays.

Proof of 2. Order splitting is unprofitable if and only if P lp(αQ)+P lp((1−α)Q|I−

αQ) ≥ P lp(Q) for all α ∈ (0, 1). Substituting in the two functional forms (2) and

(3) of P lp, this relationship holds if n ≤ −2m. In the uniform case, nup = −mup and

therefore size consistency does not apply. For the discriminatory case, ndp = −2mdp

and therefore size consistency is satisfied.

Note further that invariance pricing also implies that buying Q and then selling it

right away yields a profit of 0, −P li(Q)− P li(−Q|X −Q) = 0.

No Sandwich Attacks. In public blockchains, verified but non-settled transactions

are added to public “mem-pools” from which validators select transactions for inclusion

in a new block. Transactions in mem-pools are publicly visible, and there are bots that

monitor mem-pools for non-settled transactions that they can profit from. The type of

exploit transactions that are relevant for this paper are so-called “sandwich attacks.”

A sandwich attack occurs when someone (usually a bot) submits an order which trades

before the original one and which the person/bot reverses right after the original trade.

The original trade is therefore “sandwiched” between the bot’s buy and sell trades.

For the attack to be successful, the attacker needs to be able to control the timing

of the two trades relative to the sandwiched one. In the blockchain world, the attacker

can control the timing through the gas fees that they pay the validators because most

protocols mechanically prioritize transactions by the (gas) fees.5 Figure 1 illustrates

5For instance, in the Parity mining protocol transactions are ordered by their fee (the link points
directly to the portion of the code that describes this feature). Of course, miners can modify their
code in any way they choose.
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the mechanics of these sandwich attacks. Here I study sandwich attack profits modulo

fees; Section IV.C. studies the importance of gas fees in detail.

Although a sandwich attack is always possible, the question is whether there is

always a profitable attack. For if there is not, then, arguably, sandwich attacks should

not occur. The critical question is therefore whether or not the pricing rule makes

sandwich attack intrinsically profitable. In line with the practice in the blockchain

community, I refer to sandwich attack profits as Miner Extractable Value (MEV),

though I note that any third party and not just miners can extract value with a

sandwich attack.

For trade Q′ ∈ (0, X) and pricing functions P lp, P li, the Miner Extractable Value

(MEV) of a sandwich attack of size Q with Q′ +Q < X is defined as

MEVlp(Q,Q′) = −P lp(Q)− P lp(−Q|I −Q−Q′), (4)

MEVli(Q,Q′) = −P li(Q)− P li(−Q|X −Q−Q′). (5)

The first terms P lp(Q) and P li(Q) are what the attacker pays on the first leg of the

sandwich trade. The second terms, −P lp(−Q|I −Q−Q′) and −P li(−Q|X −Q− Q′)

are what the attacker receives after reversing their original trade of Q which they do

after the sandwiched trade of size Q′ has been processed.

Definition (Absence of Profitable Sandwich Attacks): A pricing rule P is immune

to sandwich attacks if for any trade Q′ ∈ (0, X) and all Q with Q′ + Q < X holds

MEV(Q,Q′) ≤ 0.

13

Electronic copy available at: https://ssrn.com/abstract=3805750



II. Impossibility Results

This section highlights the difficulties in AMM design that arise in a blockchain

environment. The first problem relates to pricing functions that are derived from

liquidity invariance rules. They always allow intrinsically profitable sandwich attacks,

and these profits are not bounded.

Theorem 1: Any price function P derived from a liquidity invariance condition L(X, Y ) =

L(X−Q, Y +P ) with the properties specified in I.A. allows profitable sandwich attacks

and unbounded profits for the attacker.

Proof. The attacker pays P li(Q) and receives −P li(−Q|X −Q−Q′). The definition of

liquidity invariance implies that the price one pays for buying Q and the price received

for selling it right back after are the same. Therefore

− P li(−Q|X −Q−Q′) = P li(Q|X −Q′). (6)

Therefore the MEV for the sandwich attack from (5) is

MEV(Q,Q′) = P li(Q|X −Q′)− P li(Q) > 0,

where the last inequality follows from the fact that the price is increasing when the

inventory in A tokens drops and in B tokens rises.

The increasing, unbounded nature of attack payoffs follows using Figure 3: The

attack is of size Q. Its cost is P li(Q), its revenue −P li(−Q|X − Q′ − Q), the net

amount is the MEV. In the figure, the MEV is the difference of the red line and the
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grey, P li(Q′|X −Q)−P li(Q′). The latter component is constant. The first component

is increasing in Q because the bonding curve L(·) is convex to the origin.

The next question that arises is whether traditional linear pricing rules fare better

than liquidity invariance rules. The answer here is negative, too, as they also allow

profitable sandwich attacks. However, there is one positive insight: there are paramet-

ric configurations such that the profits from front-running are bounded. These come

with the caveat that they do not satisfy size consistency.

Theorem 2: Let the marginal price be p(q|I) = V +mq + nI with m > 0 > n.

1. Any such linear pricing rule allows profitable sandwich trades.

2. Linear pricing rules that satisfy size consistency allow unlimited front-running

profits. Linear rules that allow only limited front-running profits do not satisfy

size consistency.

Proof. for 1.: Let the sandwiched trade be of size Q′ > 0. Note that the uniform and

discriminatory pricing rule both in (2) and (3) both have the same functional form

p(q|I) = V +mq+nI subject to the transformation of m = mup and m = mdp/2. Then

front-running by amount Q pays

MEVlp(Q,Q′) := −P lp(Q)− P lp(−Q|I −Q′ −Q)

= −Q · (m ·Q + n · I) +Q · (−m ·Q+ n · (I −Q′ −Q))

= −Q2(2m+ n)− n ·Q ·Q′. (7)

This expression is a quadratic equation in Q and has a local minimum when 2m+n < 0,
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and it has a local maximum when 2m+ n > 0. Furthermore it is a linearly increasing

function for 2m + n = 0. The arg-min or arg-max is Q∗ = −1

2

nQ′

2m+n
, and the value

of (7) at that point is 1/4n2Q′2/(2m+ n).

Case 1: Q∗ is a minimum. In this case Q∗ < 0. As MEVlp is a quadratic, increasing

function for all Q > 0, for large enough Q, MEVlp is positive. Moreover, MEVlp is an

unbounded function.

Case 2: Q∗ is a maximum. Then Q∗ > 0. Furthermore, the MEVlp function

−Q2(2m+ n)− nQQ′ is positive for all Q ∈
(

0, −nQ′

2m+n

)

.

Proof. for 2.: By Lemma 1.2, order splitting is not profitable for discriminatory

pricing when n = −2m, but it is profitable for uniform pricing, n = −m. For n > −2m,

the quadratic function for MEVlp, −Q2(2m+n)−nQQ′, has an internal maximum for

a positive value of Q for every Q′. For n = −2m, −Q2(2m + n) − nQQ′ MEVlp is a

linear, unbounded function.

Note that for n ր 0, MEVlp vanishes. However, this would also imply that conti-

nuity is violated; economically, n ր 0 implies that inventories play no role and that

trades have no price impact.

III. Empirical Comparison of the Pricing Models

A. Overview.

The conclusion for the analysis so far is that the common pricing functions that I

discuss here have deficiencies as they all allow profitable sandwich attacks, though at

least under uniform pricing, these profits are bounded. This raises the question if any
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of the pricing functions is at least empirically better, e.g., because it is cheaper.

My goal is to determine the prices that the same liquidity providers would produce

when faced with different pricing rules. To tackle this question I proceed as follows:

I first develop a single model of liquidity provision that allows an analysis using the

different pricing functions. I then calibrate this model to a small dataset from UniSwap.

The model allows me to determine how the liquidity providers that we can implicitly

observe from constant product pricing data would act if the pricing rule was traditional,

so that I can then perform a fair comparison of the three approaches.

B. The Liquidity Provision Decision

Market participants who engage in automated market making are producers of

liquidity. Their costs are determined by the risk that they absorb from liquidity de-

manders, and their income is determined by the price that they can charge.

Market participants trade token A which has an intrinsic value with mean V and

variance σ2 against a token B which, for simplicity, is assumed to be a numeraire such as

a fiat currency or a stablecoin. All information is public. Tokens are infinitely divisible.

Liquidity demand Q is exogenous, inelastic, and uniformly distributed, Q ∼ U [−L, L].

There are N identical, price-taking liquidity providers. In a world with automated

market making, liquidity providers make an ex-ante commitment to provide a frac-

tion αi of the liquidity. Thus, when liquidity demand is Q ∼ U [−L, L], an intermedi-

ary absorbs fraction αiQ and receives a payment αiP in return. To capture the costs

associated with absorbing a risk, liquidity demanders maximize a mean-variance utility
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of terminal wealth as follows

max
α

∫ L

−L

(

V (Ii − αq)−
κσ2

2
(−αq + Ii)

2 + αP

)

1

2L
dq. (8)

This model is loosely based on Grossman and Miller (1988) and Biais (1993).6

C. Optimal Liquidity Provision in a Traditional Model

In the traditional model, the equilibrium pricing function ensures that markets

clear, i.e., the price is such that for any Q, liquidity providers are willing to sup-

ply fraction αiQ and the liquidity supplied coincides with the liquidity demanded,
∑N

i=1
αiQ = Q. Section I.B introduces linear pricing rules. The following result de-

scribes the representations of m and n for the linear pricing rules that result from

liquidity providers’ optimization in the model specified above.

Lemma 2 (Equilibrium Price in Traditional Market Making): Define ℓ = κσ2

N
and as-

sume pricing functions are continuous. To buy Q units of token A from the N inter-

mediaries, the equilibrium coefficients for P up(Q) and P dp(Q) are mup = −nup = ℓ and

mdp = −ndp = 2ℓ.

Proof. Part 1: Determining m. The result follows by verifying that the posited func-

tions are indeed solutions to (8). Starting with the uniform price approach, and sub-

6In, Biais (1993) the fundamental value is normally distributed and liquidity providers have a
CARA utility of terminal wealth which together gives rise to a mean-variance expected utility function.
Liquidity suppliers in Biais (1993) choose the quantity that they will provide after observing the
liquidity demand. Here, they need to commit ex ante, and there is uncertainty about the respective
quantities. The uniform-pricing equilibrium price that I derive below coincides with the one in Biais
(1993), but the CARA-normal formulation is not solvable in closed form for the constant product
price. To preserve comparability, I choose the simpler, direct mean-variance formulation.
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stituting into (8), the first order condition is

L2

3
(ακσ2 −m) = 0.

Therefore, the optimal α is

α =
m

κσ2
.

Since liquidity providers are identical, in equilibrium it must hold that α = 1/N . Using

this fact, m is defined as

mup =
κσ2

N
.

Next, for the discriminatory rule, the first order condition for (8) is

L2

3
(ακσ2 −m/2) = 0.

Therefore, the optimal α is

α =
1

2

m

κσ2
.

Since it must hold that α = 1/N ,

mdp =
2κσ2

N
.

Part 2: Determining n. Lemma 1 shows that for the two pricing functions to be

continuous, it must hold that nup = −mup and ndp = −2mdp. Therefore, nup = −mup =

−ℓ and ndp = −2mdp = −2ℓ .

Notably, for a starting inventory of I = 0, the ex ante prices and therefore the ex
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ante revenue for liquidity providers are identical for the two linear pricing approaches.

D. Optimal Liquidity under Constant Product Pricing

Section I. introduces constant product pricing as a special case of liquidity invari-

ance pricing: Under constant product pricing, a liquidity demander who wants to

purchase Q ∈ (−∞, X ] of the A token, has to deposit P units of the B tokens into the

AMM contract such that P solves (X −Q) · (Y + P ) = X · Y . Therefore

P cp(Q|X) = P cp(Q) = Q ·
Y

X −Q
= Q ·

V X

X −Q
, (9)

where the last equality stems from the fact that the marginal price must coincide with

the fundamental value, V = Y/X .

Under traditional pricing, the market clearing condition would determine the quan-

tity that liquidity providers deliver, and liquidity providers implicitly commit to provide

arbitrarily many tokens. The price of Q is determined by slope parameters that reflect

the liquidity providers’ risk aversion. Under constant product pricing, the quantity

of supplied and demanded tokens cannot coincide because the price is not defined for

Q → X (limQ→X P cp(Q) = ∞).

Instead, the approach is more subtle. For fixed V (and thus Y is determined by V

and X), the slope of the pricing curve is driven by the ex ante quantity of A tokens,

X , and therefore the aggregate quantity supplied determines the price that liquidity

providers receive in equilibrium. In equilibrium, this amount has to be the size such

that each liquidity provider is willing to contribute a share so that the aggregation of

these shares is indeed the size that gave rise to the price function.
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Formally, in the optimization problem, price taking liquidity providers take the

functional form and thus X as given and decide which fraction αi of X they are willing

to supply. The equilibrium quantity of liquidity X is then the number of tokens such

that liquidity providers are each willing to deposit an amount of liquidity αiX such

that
∑N

i=1
αiX = X. Since liquidity providers are identical, αi = α. For the constant

pricing approach, the optimal α for (8), keeping X fixed is

α(X) =
3

2

XV

ℓL3

(

X ln

(

X + L

X − L

)

− 2L

)

. (10)

Assuming the presence of N identical liquidity providers, the equilibrium quantity X∗

must then solve α(X∗) = 1/N .

Lemma 3 (Constant Product Liquidity Provision): For each number of liquidity providers

N , there exist an amount X(N) =
∑

αiX(N).

Proof. For identical liquidity suppliers, α(X) = 1/N . The right hand side of (10) goes

to infinity for X → L and to 0 for X → ∞, and thus a value X∗ exists such that

α(X) = 1/N for any N .

Therefore, although the constant product pricing rule does not itself emerge from an

economic model, one can formulate the liquidity providers’ optimization problem and

derive an equilibrium quantity of liquidity that is compatible with optimizing behavior.

Moreover, by deriving behavior from the same underlying optimization problem, I can

now compare the prices for different pricing rules.
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E. Empirical Calibration

The goal of this subsection is to provide a meaningful comparison of the prices

and MEVs that arise under the difference pricing rules. Instead of using arbitrary

values for the various parameters, I believe it may be more insightful to use values that

reflect trading as it occurs in practice. Therefore, for this exercise, I use data from

UniSwap V2 for two prominent contracts: ETH-USD and BTC-USD.7 These two pairs

are stylized examples because at the time of writing wETH-USDC is the most liquid

trading pair in UniSwap V2 whereas wBTC-USDC is a low liquidity pair.

Parameter Derivation. For the comparison, I need to obtain estimates for the ex-

pected fundamental value V and the variance σ2, risk aversion parameter κ, the num-

ber of liquidity providers N , the deposited quantity X , and the uniform distribution

bounds [−L, L]. The derived and estimated parameters are in Table I.

According to UniSwap Analytics, on February 8, 2022, the wETH-USDC pool

contained approximately 38,100 ETH and an equivalent amount of USDC for an implied

price of $3,100. The wBTC-USDC contract contained 6.25 BTC and an equivalent

amount of USDC for an implied price of $44,000. These deposited amounts serve as

my proxies for X , the quantities of the A token, and I use the implied prices as my

proxy for the expected value V .

The traditional market maker model requires a choice for the risk aversion coeffi-

cient κ. Using a meta-analysis, Babcock, Choi, and Eli Feinerman (1993) (Table 1)

7To be precise, neither ETH nor BTC can be directly traded in AMM systems. Instead, these
systems use so-called wrapped tokens. Furthermore, these system don’t use the USD, but digital
representations in the form of the USDC stablecoin.
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report that the CARA coefficient κ falls anywhere between .00001 and 0.5, where most

of the values in the literature are at the lower end of this range; in my subsequent

calibration, I use κ = 0.0005.

To estimate the standard deviation on V , I use daily data from CoinDesk (for

BTC and ETH) and compute the average standard deviation of daily prices for each

month of 2021. For the w-ETH-USDC contract, it is approximately 260, for BTC it is

approximately 4100. These values serve as my estimates for σ2.

The next set of parameters relate to the distribution of quantities q. I obtain

the swap transactions for wETH-USDC and wBTC-USDC from Etherscan.io for Jan-

uary 2022. The empirical distribution of quantities resembles a uni-modal function,

but since the purpose of this section is to provide an illustration and not a full empiri-

cal analysis, I will follow the description from the theoretical model and approach the

empirical distribution as uniform. Since the empirical distribution is not uniform, my

goal is to choose a bound L that captures many trades so that the uniform assumption

is at least loosely justified and so that I do not greatly overestimate the prevalence of

large quantities. For wETH-USDC, 92% of observations are smaller than 10 and 52%

smaller than 1. For wBTC-USDC, 97% are smaller that 0.5 and 58% smaller than 0.1.

These four values are henceforth my estimates for the uniform distribution bound L.

Finally, to obtain the number of liquidity providers, I substitute the estimated

parameters into (10) and solve for α∗ = 1/N . At the observed values for X of 38,100

for wETH-USDC, I estimate N to be 415 for L = 10 and 409 for L = 1. For wBTC-

USDC, I estimate N to be 1.2 for both L = 0.5 and L = 0.1.
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Measures for Comparison. The first key metric in the comparison is the average

price; it captures the rents of liquidity providers. Formally, the average price is

E[P ] =

∫ L

−L

P (q) f(q)dq. (11)

Note that ex ante and for inventory I = 0, prices under the uniform and the discrimi-

natory rule coincide.

As shown above, sandwich attack profits are theoretically unbounded for constant

product and discriminatory pricing. For uniform pricing, for any Q′, the theoretically

optimal sandwich attack is a trade of size Q = Q′/2. To ensure comparability I

will compute sandwiching profits for sandwich attacks with two sizes: the first is for

Q = Q′/2. The second is for size Q′ = Q. In the latter case, sandwich trades under

uniform pricing are zero. Following Section II., the sandwich attack profits are

MEVdp(Q,Q′) = 2ℓQQ′, MEVup(Q,Q′) = ℓQ(Q′ −Q), and (12)

MEVcp(Q,Q′) =
Y QQ′ (2X −Q−Q′)

(X −Q) (X −Q−Q′) (X −Q′)
. (13)

I then compute

E[MEV] =

∫ L

−L

MEV
(q

2
, q
)

f(q)dq and E[MEV] =

∫ L

−L

MEV(q, q) f(q)dq. (14)

Results. Table II contains the estimated costs with its rows as in Table I.

For the liquid wETH-USDC pair, the average prices under traditional pricing and

constant product pricing differ only in the fourth digit for both the tight and the wide
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range of quantities, where the constant product price is marginally lower. For the less

liquid wBTC-ETH trading pair, traditional pricing is cheaper, by about 20 basis points

for the wider range of trade sizes.

Payoffs from sandwich attacks are substantially lower under uniform pricing, for the

same trade size, compared to the other two pricing models. For the liquid wETH-USDC

pair, sandwich attacks yield higher payoffs under discriminatory pricing, though the

difference is in the third digit. For the less liquid wBTC-ETH trading pair, sandwich

attack payoffs are much larger under constant product pricing.

To put these numbers into perspective, the last two columns of Table II contain the

realized spread that would obtain at the maximal quantity (e.g., 1 and 10 for wETH-

USDC, 0.1 and 0.5 for wBTC-USDC). For the liquid ETH-based contract, it is small,

less than 2.7 BPS for a trade worth $31K. Such low costs are a sign for a remarkably

liquid market, and this spread is comparable to the bid-ask spread on the most liquid

centralized exchanges. For the the less liquid wBTC-USDC contract, however, a trade

of around $22K would have a realized spread of 800 basis points under traditional

pricing and 870 bps with constant product pricing, indicating a meaningful difference

between traditional and constant product pricing.

IV. Limiting Sandwich Trades and Order Splitting

A. Technological Solutions

There are several examples of technological solutions that seek to address sandwich

attacks. The first is the approach taken by the aggregator protocol 1Inch, which does

not allow one to submit opposite-direction trades for some period of time after a trade
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has been submitted. A sandwich attacker would want the return leg of a sandwich

trade to be executed right after the sandwiched trade. Since the attacker has to wait,

the profits from the return leg are uncertain, which is a significant disincentive.

The second approach is that taken by COW-Swap (“Coincidence of Wants”), which

privately matches large orders, similarly to crossing networks in equity markets. How-

ever, COW-Swap essentially just matches orders and thus is closer to a dark pool than

an AMM.

A third approach is the Flashbots protocol: validators that follow the protocol

receive AMM trades “privately,” and they commit to not include them in the public

mempool and not to front-run them. Users can connect their wallet to this protocol

and when they use an AMM, their trade would be submitted only to miners who follow

this protocol. Capponi, Jia, and Wang (2022) document that, since its inception in

January 2021, a sizeable fraction of Ethereum miners started to follow this protocol and

that around 2% of blockspace on Ethereum is due to transactions from this protocol.

However, Capponi, Jia, and Wang (2022) outline that the approach comes with some

caveats. First, miners have to voluntarily adopt the protocol and may not have an

incentive to do so. Second, when the set of miners is small, users may have to wait for

a while before their order gets processed, and they face risk in the meantime. Third,

as Capponi, Jia, and Wang (2022) point out, the usage of the flashbots protocol does

not eliminate the possibility of a sandwich attack: for the example in the introduction,

the sandwiched transaction was sent using the Flashbots protocol.

A fourth approach to curb front-running of trades has been proposed by Aune,

O’Hara, and Slama (2017). The idea is to publicly broadcast only a hash of the
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transaction, not the details of the transaction itself to make it less likely that the

transaction can be “attacked.” The approach resembles zero-knowledge transactions

(which are computationally expensive). This paper was written before swap exchanges

and decentralized finance had gained traction, and it is an open question whether this

approach is compatible with AMM trades, in particular because the price in AMMs is

determined only at the time when the trade is processed in a block.

Another solution is to organize automated market making in a so-called optimistic

rollup. A roll-up is similar to a side-chain where users deposit tokens for trading

and liquidity provision in a vault, and the roll-up operator processes trades, possibly

following a time priority rule. The process differs from a centralized exchange in

that the operation of the roll-up uses the functionality and security of the base-layer

blockchain, but individual transactions do not enter a public mempool. With a properly

designed data layer, the rollup organizer can be incentivized to disallow sandwich

attacks with a “slashing” mechanism, i.e., the pool organizer would lose funds if there

is evidence of a sandwich attack in the roll-up. One possible downside is that an AMM

in an optimistic rollup may not be useful for app-composability, that is, it may not

integrate easily in the connected sequences of transactions that occur, e.g., in DeFi

loan liquidations (see Lehar and Parlour (2022)).

All the above approaches aim to prevent sandwich attacks entirely. In principle,

an AMM could also employ a different pricing rule, such as uniform pricing, which

would limit (but not prevent) the profits from sandwich attacks. Uniform pricing,

however, incentivizes order splitting. Can technology prevent order splitting? First,

validation/gas fees limit the number of profitable splits. Second, similarly to 1Inch,
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protocols could add a rule that prevents the same wallet address from submitting trades

within a specified number of blocks from one another. Doing this, however, would

require the system to use data from outside of its smart contract, which increases

complexity and may add unforeseen exploit risks.

B. Slippage Protection, Validator Fees, and Trading Fees

Overview. So far this paper has studied price functions without frictions. In prac-

tice, liquidity demanders have to pay fees to the blockchain validators and fees to

liquidity providers. Furthermore, AMMs allow traders to limit the price impact or

“slippage” of their trade so that the trade does not occur if its price exceeds a thresh-

old. In what follows, I study how these feature affect the sandwich attacks.

Limiting Price Impact/Slippage. As the analysis in this paper shows, limiting

the price impact of a trade is very important in practice because under constant prod-

uct pricing, profits from sandwich attacks are unbounded and therefore the liquidity

demanders’ losses are unbounded, too.

Although limiting slippage may help prevent bad cases of front-running, there are

practical concerns. First, liquidity demanders need to understand by how much their

trade moves prices because of the shape of the pricing function. If they set a limit

that is too low, their trade cannot go through. Second, they also need to account for

the possibility that prices can move before validators include their trade, even in the

absence of a sandwich attack. By being too cautious, a trader may have to resubmit

their trade multiple times.

The problem for the trader is that even non-executed trades can be costly. The
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reason is that a validator may include an unexecuted trade in a block and collect the

gas fees even though no tokens change hands (e.g., the contract fails because the price

impact or “slippage” was to large).

Therefore, to avoid paying a gas fee for nothing, a trader may choose to set a

slippage limit that is higher than the “natural” price impact that the trade would

cause because of the slope of the pricing function. Yet such a higher limit opens them

up for a sandwich attack.

Trading and Validation Fees. So far I have ignored trading and validation fees to

simplify the theoretical analysis. In practice, users need to pay blockchain validators

for the computational cycles (or gas) that the processing of their order consumes.

Moreover, in most automated market maker systems, liquidity demanders also pay the

liquidity suppliers a fee. Lehar and Parlour (2021) describe the details. Crucially,

a sandwich attacker has to pay these fees for both legs of their attack. The main

difference between validator and trading fees is that trading fees are exogenous to the

protocol, whereas the liquidity demander can choose the validation fee.

C. Slippage Protection and Fees as a Sandwich Attack Defense

In what follows I will discuss how liquidity demanders can use validation fees and

slippage-limits to thwart sandwich attacks. Although trading fees also matter in prac-

tice, they are not under the control of the trader. As they are merely an additional

friction in this decision problem, I will again ignore trading fees to simplify the analysis.

The idea for what follows is that for a fixed level of fees, a trader can specify a

slippage limit that makes a sandwich attack unprofitable. The argument also works in
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reverse: for a fixed slippage level, traders can set a fee that renders attacks unprofitable.

The key insight is this: Because sandwich attackers have to pay the fee twice,

liquidity demanders can specify a slippage level that allows for interim price movements

(so they don’t have to pay for a failed transaction) while still making sandwich attacks

unprofitable.

The equations in (12) and (13) specify the sandwich attack profits for the three

pricing functions. Suppose a trader specifies a maximum price impact B of their trade

so that the trade fails if P (Q′) > B. A sandwich attacker would then submit sandwich

trades with a quantity Q∗ that maximizes their payoff without triggering the price

impact constraint, e.g.,

max
Q

MEVcp(Q,Q′) s.t. P cp(Q′|X −Q) ≤ B.

For instance, for constant product and discriminatory pricing, MEV profits are not

bounded and increasing in the attack size Q. Therefore, the attacker would simply

pick the largest possible Q∗, i.e., P cp(Q′|X −Q∗) = B.

The expressions for the MEVs (12) and (13) do not account for validation fees.

In the case of validation fees, the front-runner has to outbid the original trader for

the validation fee so as to get the first leg of the attack processed before the original

trade. Ceteris paribus, the attacker wants their fee f + ǫ1 to be as close as possible

to the original trader’s fee f . Moreover, they also have to pay a validation fee for the

second leg of the sandwich attack. The second leg transaction is critical because it

provides the positive cash-flows in the sandwich attack. It is in the attacker’s interest

to place this transaction as close as possible in the block to the sandwiched trade to

30

Electronic copy available at: https://ssrn.com/abstract=3805750



prevent someone else from earning the positive cashflows. The validation fees for the

return transaction therefore have to be high enough to ensure that the second leg of the

trade gets included in the same block (otherwise, the front-runner faces a significant

execution risk) but they must be low enough so that the attacked trade gets processed

before the second leg trade. Therefore, they want to propose a fee close to but below

the original trader’s fee, f − ǫ2. The relative sizes of ǫ1 and ǫ2 are somewhat arbitrary

and without loss of generality, let ǫ1 = ǫ2. Then the attacker pays f + ǫ1+ f − ǫ2 = 2f .

Taken together, there are two new factors that determine the sandwich attack profits

beyond the contract liquidity and that are beyond the attacker’s control: the price

impact or slippage bound and the validation fee. The following result describes how

the original trader can prevent sandwich attacks with slippage limits or validation fees.

Proposition 2 (Defensive Fees and Slippage Protection):

1. Assume that the trader specifies a maximum price impact B for their trade such

that P (Q′) ≤ B. Then there exists a validation fee f that the original trader can

submit to render sandwich attacks unprofitable.

2. Assume that the trader needs to pay a validation fee of f . Then the trader can

specify a price impact bound B with P (Q′) ≤ B such that any sandwich attack is

unprofitable.

Proof. of 1. Fix the original trade size to Q′. For discriminatory and constant product

pricing, there are amounts Qcp, Qdp that solve P dp(Q′|I − Qcp) = B and P cp(Q′|X −

Qcp) = B.

Under uniform pricing, MEV profits are limited; the local maximum for MEV

is for Q = Q′/2. Therefore, if at the local maximum the slippage bound has not
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be triggered P up(Q′|I − Q′/2) < B, then the attacker would attack with order size

Qup = Q′/2. If at the local maximum for the attacker the slippage bound has been

triggered, P up(Q′|I −Q′/2) > B, then because the price P up(Q′|I −Q) is increasing in

Q, the attacker would submit an order Qup < Q′/2 such that P dp(Q′|I −Qup) = B.

Each of the attack quantities Qcp, Qdp and Qup yield the attacker the largest possible

MEV given the slippage protection under the respective pricing rules.

Applying these values Q∗ to the MEVs in (12) and (13), one can determine the

maximum value that the attacker can extract given the slippage protection. For front-

running to be profitable,

MEV(Q∗(Q′), Q′) > 2f + (ǫ1 − ǫ2) = 2f. (15)

Therefore, for each Q′, the liquidity demander can pick a fee f ∗, such that the above

inequality is violated and then no sandwich attack is profitable.

Proof. of 2. For discriminatory and constant product pricing, MEV is strictly

increasing without bound in the size of the attack. Therefore, there exist Qcp, Qdp

such that MEVcp(Qcp, Q′, )−2f = 0 and MEVdp(Qdp, Q′, )−2f = 0. By specifying the

slippage bounds Bcp, Bdp that solve P dp(Q′|I−Qdp) = Bdp and P cp(Q′|X−Qcp) = Bcp,

the trader can render sandwich attacks unprofitable.

In the uniform case if MEVup(Q′/2, Q′)− 2f < 0 then no sandwich attack is prof-

itable. If MEVup(Q′/2, Q′)−2f > 0, then since MEVup(Q,Q′) is strictly increasing for

Q ∈ [0, Q′/2) and MEVup(0, Q′) = 0, there is a Qcp < Q′/2 such that MEV(Qcp, Q′)−

2f = 0. By specifying the slippage bound B such that P up(Q′|X − Qcp) = B, any

sandwich attack unprofitable.
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Although liquidity demanders can defend themselves against sandwich attacks, note

that for any pricing function, MEV is an increasing function of the original order size

Q′ so that a larger MEV can be earned for sandwich attacks of larger trades. Therefore,

liquidity demanders of large quantities may have to pay ever increasing fees to prevent

sandwich attacks.

Moreover, the above mechanism where the liquidity demanders uses a combination

of the validation fee and the slippage bound relies on the idea that a front-runner can

convince a validator to process their transaction first. However, this argument does not

apply if the validator does the sandwich attack themselves: the validator can submit

and process their own transaction without paying themselves any fees.

V. Discussion and Conclusion

One of the biggest problems in securities markets is that many assets have an illiquid

market. Lack of liquidity makes trading more expensive and increases the risk of not

finding a trading counterparty at all, raising fundings costs for issuers and limiting

the attractiveness of stock options in compensation packages. A key innovation of

automated market makers is the pooling of liquidity, which could improve particularly

illiquid markets. A pre-requiste is that the automated trading system is sound. This

paper highlights a major design challenge.

By default, while transactions wait to be added to a block, they are visible in public

mem-pools. This intrinsic transparency of blockchain operations creates a challenge:

an attacker can “sandwich” any trade by submitting a transaction that gets processed

before the original one and that the attacker reverses after. The problem is that such
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an attack is always profitable, modulo fees.

The premise of blockchain-based, automated market makers is that their pricing

function is “self-contained:” all information that is necessary for pricing are the de-

posits in the liquidity as pool, and the pricing rule guarantees liquidity invariance in the

sense that as a trader removes liquidity for one token, they must add liquidity in the

other to keep aggregate pool liquidity constant. An example for such a liquidity invari-

ance condition is the ubiquitous constant product pricing rule. As this paper shows,

any invariance rule renders sandwich attacks profitable, and the attacker’s profits are

theoretically unbounded.

The problem of profitable sandwich attacks is not limited to invariance rules: An

intuitive linear pricing rule that resembles limit order book pricing as the same problem.

Another common pricing rule from economic models, so-called uniform pricing, allows

only bounded profits from sandwich attacks. However, this rule does not perform well

in a blockchain environment either because it encourages order splitting, which lowers

the rewards for liquidity providers and increases network congestion.

There are several technological approaches to mitigate the problem: some protocols

operate like dark pools, others prevent the return-trip trades central to “sandwiching.”

Yet another solution is to change the validation process: The Flashbots protocol allows

liquidity demanders to send transactions privately to miners, so they do not appear in

public mem-pools. Yet in practice, this approach is not a complete solution either. In

the future, proof of stake networks or optimistic roll-ups may provide another solution,

though as He and Li (2022) shows, punishments for misbehavior are often not imposed.

In practice, there is no “one-system-fits-all” solution. For liquid pools, constant
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product pricing works well: trades cost about the same or less compared to the

calibrated, “economics-based” pricing rules. For illiquid pools, traditional pricing is

cheaper. When comes to value lost through sandwich attacks, the uniform pricing rule

serves investors best as it conceptually limit profits from sandwich attacks. However, in

contrast to the constant product pricing, which is easy to program, the implementation

of a uniform pricing rule likely requires a more complex process.

A Appendix: Background on Blockchain Token Trading

Prior to the summer of 2020, most crypto-tokens that had been issued on the

various decentralized platforms could only be traded on centralized venues such as

Polionex, Binance, Kraken, Coinbase, or the now defunct QuadrigaX. There are subtle

institutional differences between centralized venues: some, like Coinbase and Kraken,

are connected to the payments network and the traditional financial infrastructure

whereas others, such as Binance and Polionex, allow only crypto-to-crypto trades.

Transactions on these venues are usually trades of crytocurrencies such as Bitcoin

and Ether, the cryptocurrency of the Ethereum network, in exchange for either fiat

currencies or other tokens that represent fiat currencies, so called “stablecoins” such as

USDT or USDC. To trade, users have to register with the platform and transfer their

blockchain asset to the “wallet” of an exchange, before they can use the exchange’s

system to make their trades. Consequently, as part of the process, custody of the

asset moves from the user to the exchange, and users have to pay fees both for the

blockchain transaction as well as to the venue. Keeping tokens at an exchange is

risky, as demonstrated by the numerous hacking and fraud scandals such as Mt. Gox,
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QuadrigaCX, or Thodex. Moving crypto assets in and out of traditional exchanges

involves fees and is time consuming.

Early in blockchain development, there were a number of projects that operated de-

centralized limit order books, e.g. EtherDelta. The idea of these decentralized “venues”

is simple. Trades are always exchanges of two blockchain tokens, and so users simply

register their limit orders as a smart contract on the blockchain, “locking” the token

that can be sold subject to someone sending the desired amount of the other token to

the contract. When that happens, the contract initiates an atomic swamp: the buyer

receives the bought tokens and the seller receives the payment tokens. This atomic

swap is processed by the blockchain miners and happens “in one go” so that failures to

deliver cannot happen — the trade is the settlement. A decentralized exchange (DEX)

provides users with an interface to enter and sign orders using the cryptographic ca-

pabilities of their existing blockchain wallet. The system keeps track of these orders

(using information from the blockchain, not its own system) and displays available

orders on a website.

Although such a mechanism is workable, it requires that individuals continuously

monitor and re-submit orders to supply liquidity, a costly activity. Moreover, liquid-

ity provision also involves the ongoing submission of new liquidity providing orders,

which absorbs computational power and costs validation fees.8 Some trading systems

circumvent this approach by organizing limit orders off-chain and the system submits

only matched orders as a trade to the blockchain for settlement.

8This is in contrast to most centralized exchanges or today’s stock exchanges, where order submis-
sions are usually free. The exception is Canada where users have to pay a nominal, sub-penny fee for
every order that they submit; see Malinova, Park, and Riordan (2013). There are so-called layer-2
systems that keep the limit order book offline and only execute the trades on-chain.
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Swap exchanges take yet another approach. A swap exchange is a smart contract

that pools deposits of pairs of token from numerous liquidity providers.9 Liquidity

seekers interact with this pool of liquidity and offer to add one type of tokens to this

contract in exchange for the other token of the pair. The contract then determines the

exchanged quantity based on a mechanical rule. Importantly, liquidity providers do

not provide a priced contract, they are entirely passive (UniSwap V3 is more general

and allows liquidity providers to specify liquidity depending on prices).
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Figure 1
Illustration of Front-Running in Blockchains

The possibility of front-running is an intrinsic feature of blockchains. The schematic works as follows. A user
who wants to perform a swap transaction submits the tokens she desires to exchange to the constant product
market making contract (1). The contract submits an atomic swap to the blockchain network, and upon
verification this transactions enters the mem-pool (2). Verified transactions get ordered in a block based on the
fees that they offer (all else equal) (3). An attacker (likely a bot) observes the mempool and see a transaction
that can be front-run profitably (4). The bot sends two off-setting swap transactions to the contract, when the
front-running trade has a higher fee than the original, front-run transaction (5). In the block, the transactions
now get re-ordered according to their mining fees and, upon inclusion on the chain, the transactions in the
CPMM contract get executed in the order of the fees (6).
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Figure 2
Size Consistency for the Constant Product Rule P cp

The figure plots the constant product cost function. After a trade of Q, there are X−Q of the A tokens in the
contract and the trader had to pay P cp(Q) of the B tokens so that there are Y + P cp(Q) of the B tokens. If
instead the liquidity demander had first submitted a trade for αQ of the A tokens followed by (1−α)Q, they’d
have to pay P (αQ) and P ((1−α)Q|X −αQ). By construction, both these prices are on the same iso-liquidity
curve and, therefore P (αQ) + P ((1− α)Q|X − αQ) = P (Q).
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Figure 3
Payoffs from a Sandwich Attack for the Constant Product Rule P cp

The figure illustrates the payoffs from a sandwich attack of an order of size Q. The attack here is for order
sizes Q′. The cost is P cp(Q′), the benefit −P cp(−Q′|X − Q′ − Q), the net amount, the MEV, is the red line
minus the gray line.
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Table I
Calibration of Key Model Parameters

The table summarizes the estimated values for the model parameters for the two trading pairs wETH-USDC
and wBTC-USDC. The fundamental value V is based on the respective UniSwap V2 liquidity pools in early
2022 as is liquidity in the pools, X . The standard deviation is estimated from 2021 daily price data, the risk
aversion coefficient is from the economic literature, the bound on the quantity distribution is from the traded
quantities data as obtained via the blockchain explorer Etherscan. The number of liquidity providers is derived
by setting the right hand side of equation (10) equal to 1/N and then solving for N .

trading
pair

fundamental
value V

standard
deviation σ

liquidity
provided X

bound for
quantities L

risk aversion
coefficient κ

number of
liquidity
providers

Source
UniSwap
Analytics

Coindesk
UniSwap
Analytics

Etherscan Literature solve (10)

wETH-USDC $3,100 260 38,100 10 0.0005 416
1 0.0005 409

wBTC-USDC $44,000 4100 6.25 0.5 0.0005 1.2
0.1 0.0005 1.2
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Table II
Cost Comparison

The table summarizes the estimated costs for traditional vs. constant product pricing. The average price
is computed for the quantity distribution that underlies the respective model. Ex ante expected prices are
theoretically identical for uniform and discriminatory pricing for zero starting inventories and are therefore not
differentiated.

average
price paid

Maximum Extractable
Value for Q′ = Q

Maximum Extractable
Value for Q′ = Q/2

realized spread in
BPS of V for Q = L

trading
pair

uniform &
discr.

constant
product

discrim-
natory

uniform
constant
product

discrimi-
natory

uniform
constant
product

uniform &
discr.

constant
product

wETH 3100.407 3100.407 2.715 0.000 2.714 1.357 0.339 1.356 2.637 2.625
-USDC 3100.041 3100.041 0.028 0.000 0.020 0.014 0.003 0.010 0.267 0.262
wBTC 45751.040 45859.880 583.680 0.000 710.661 291.840 72.960 337.992 795.928 869.565
-USDC 44350.210 44355.800 23.347 0.000 24.337 11.674 2.918 12.058 159.187 162.602
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